Constructing class fields over local fields
نویسندگان
چکیده
منابع مشابه
Constructing class fields over local fields
Let K be a p-adic field. We give an explicit characterization of the abelian extensions of K of degree p by relating the coefficients of the generating polynomials of extensions L/K of degree p to the exponents of generators of the norm group NL/K(L ∗). This is applied in an algorithm for the construction of class fields of degree pm, which yields an algorithm for the computation of class field...
متن کاملConstructing class fields over local fields par Sebastian Pauli
Let K be a p-adic field. We give an explicit characterization of the abelian extensions ofK of degree p by relating the coefficients of the generating polynomials of extensions L/K of degree p to the exponents of generators of the norm groupNL/K(L). This is applied in an algorithm for the construction of class fields of degree p, which yields an algorithm for the computation of class fields in ...
متن کاملConstructing Splitting Fields of Polynomials over Local Fields
We present an algorithm that finds the splitting field of a polynomial over a local field. Our algorithm is an OM algorithm modified for this task.
متن کاملSemigroups over Local fields
Let G be a 1-connected, almost-simple Lie group over a local field and S a subsemigroup of G with non-empty interior. The action of the regular hyperbolic elements in the interior of S on the flag manifold G/P and on the associated Euclidean building allows us to prove that the invariant control set exists and is unique. We also provide a characterization of the set of transitivity of the contr...
متن کاملConstructing irreducible polynomials over finite fields
We describe a new method for constructing irreducible polynomials modulo a prime number p. The method mainly relies on Chebotarev’s density theorem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Théorie des Nombres de Bordeaux
سال: 2006
ISSN: 1246-7405
DOI: 10.5802/jtnb.563